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Oxidative rearrangements of bicyclic 2-alkenyl aziridines
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Abstract—Oxidation of a range of photochemically generated aziridines gave products arising from a [2,3] Meisenheimer
rearrangement of the initial N-oxide, followed by further oxidation to give d-hydroxynitrones. © 2001 Elsevier Science Ltd. All
rights reserved.

Amine N-oxides are thermally labile species, which can
undergo decomposition in a variety of ways.1 Simple
trialkyl N-oxides usually undergo Cope elimination
upon heating to give a hydroxylamine and an olefin,
whilst N-allylamine N-oxides tend to undergo a con-
certed [2,3] sigmatropic shift, commonly known as the
Meisenheimer rearrangement (Scheme 1). The Meisen-
heimer rearrangement is perhaps of more interest from
a synthetic point of view, as it allows the transfer of
both functionality and stereochemical information;
however it remains relatively under-utilised by synthetic
chemists. In particular there have been no reports of
Meisenheimer rearrangements of aziridine N-oxides,

and only a handful of examples of azetidine N-oxides,2

even though the relief of strain in such systems should
provide an additional driving force for the reaction to
proceed.

Recent publications from our group3 and others4 have
shown that the photosolvolysis of N-alkylpyridinium
salts in water or methanol allows for the facile con-
struction of bicyclic cyclopentenyl aziridines such as 1.
We felt that these conformationally restricted 2-alkenyl
aziridines would provide an ideal starting point for a
study into the behaviour of aziridine N-oxides.

It was found that under the first conditions we tried
(portionwise addition of mCPBA to a cooled solution
of 1 and excess NaHCO3 in CH2Cl2), two equivalents
of oxidant were required for the reaction to go to
completion. The product was the nitrone 2. Despite the
low yield, we were encouraged by this result and rea-
soned that the highly polar N-oxide intermediate might
be stabilised by the use of a more polar solvent. To our
delight the yield improved considerably when the reac-
tion was carried out in methanol or acetonitrile (Table
1).Scheme 1. Reactions of tertiary N-oxides.

Table 1. Oxidation of the aziridine 1

Keywords : amine oxide; aziridine; Cope elimination; Meisenheimer rearrangement; nitrone; oxidation; oxime.
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Scheme 2. Possible mechanism of the oxidative rearrangement.

Table 2. Oxidation of the aziridine 5

It seems likely that the reaction proceeds via the mech-
anism shown below (Scheme 2). Initial oxidation of the
aziridine gives the endo-N-oxide 3, which undergoes
rapid Meisenheimer rearrangement to the bridged bicy-
cle 4. Further oxidation of the nucleophilic nitrogen,
followed by base catalysed N�O bond cleavage gives
the nitrone 2.

The mixed aziridinyl acetal 5 was prepared by the
photosolvolysis of 3-ethoxy-1-ethyl-pyridinium tetra-
fluoroborate in methanol. Upon oxidation of this in
CH2Cl2, we were surprised to observe a mixture of the
nitrone 65 and the oxime 76 as products. Switching the
solvent to acetonitrile gave an improved yield and
selectivity for the nitrone 6, whilst carrying out the
reaction in methanol gave a complete reversal of selec-
tivity, with only the oxime 7 being observed (Table 2).

The oxime 7 appears to be a product of over-oxidation
of the nitrone 6. This is supported by the observation
that pure 6 is converted to 7 upon treatment with
mCPBA in methanol. This oxidative cleavage of
nitrones has not previously been reported and the likely
mechanism would involve oxidation of the nitrone to
the oxaziridine 8, which then loses acetaldehyde to give
the nitroso compound 9. This then tautomerises to the
oxime 7 (Scheme 3).

An alternative mechanism involving initial hydrolysis of
the nitrone followed by further oxidation was consid-
ered unlikely, because the nitrone 6 showed no sign of
hydrolysis upon treatment with NaHCO3 in damp
methanol.

For good selectivity to be observed, the oxidation of
the aziridine 5 would have to be faster than the oxida-
tion of the nitrone 6. The initial oxidation step is likely
to involve a larger increase in dipole moment than the
second, hence a polar solvent such as acetonitrile would
be expected to improve the selectivity for the nitrone 6.
Methanol is also a very polar solvent; however the
aziridinyl nitrogen lone pair of 5 would be deactivated
towards oxidation by hydrogen bonding to the solvent.
This would reduce the rate of the initial oxidation and
perhaps account for the reversal of selectivity. It is
possible that the extra steric protection afforded to the
nitrone 2 prevents the over oxidation competing in
reactions of 1.

Having established acetonitrile as the best solvent in
terms of both yield and selectivity, we carried out the
reaction on a range of other aziridines (Table 3).

It is interesting to note that substrates 16 and 19 gave
mixtures of products, with the side products 18 and 21

Scheme 3. Proposed mechanism for the oxidation of the nitrone 6.
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Table 3. Oxidation of a selection of other aziridines

apparently arising from the formation of an exo rather
than an endo aziridine N-oxide. In the case of substrate
16 the exo-N-oxide 22 could form, which would be
unable to undergo a Meisenheimer rearrangement.
However, a Cope elimination of 22 would be possible
and the resulting hydroxylamine 23 could be further
oxidised to the nitrone 18 (Scheme 4).7

The reason why an exo aziridine N-oxide should form
is unclear, although it appears that the presence of an
unsaturated group on the aziridine may play a role.

In conclusion we have shown that the oxidation of
bicyclic cyclopentyl aziridines gives rise to a variety of
rearrangements, including a previously unreported [2,3]

Scheme 4. Formation of the nitrone side-product 18 via a Cope elimination..
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Meisenheimer rearrangement of an aziridine N-oxide
and a novel oxidative cleavage of a nitrone to an
oxime.8
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